

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The Raman and Infrared Spectra and Structures of Ethyl Chloride, Bromide and Iodide

Keinosuke Hamada^a; Hirofumi Morishita^a

^a Faculty of Education, Nagasaki University, Nagasaki, Japan

To cite this Article Hamada, Keinosuke and Morishita, Hirofumi(1980) 'The Raman and Infrared Spectra and Structures of Ethyl Chloride, Bromide and Iodide', *Spectroscopy Letters*, 13: 6, 373 — 380

To link to this Article: DOI: 10.1080/00387018008064029

URL: <http://dx.doi.org/10.1080/00387018008064029>

PLEASE SCROLL DOWN FOR ARTICLE

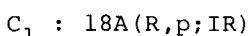
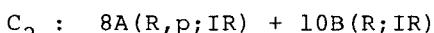
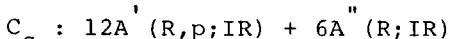
Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE RAMAN AND INFRARED SPECTRA AND STRUCTURES OF ETHYL
CHLORIDE, BROMIDE AND IODIDE

Key Words: Raman, Infrared, Structure, C_2H_5I , C_2H_5Br ,
 C_2H_5Cl




Keinosuke Hamada and Hirofumi Morishita
Faculty of Education, Nagasaki University, Nagasaki Japan

ABSTRACT

The Raman, infrared and proton NMR spectra of the liquid molecules, C_2H_5-X ($X=Cl, Br, I$) have been recorded. And the molecular structures have been studied on the basis of these spectra. Consequently a non-rigid structure in which a CH_2 group rotates freely with respect to the three hydrogen atoms of CH_3 group is established.

INTRODUCTION

The obtained Raman spectra and the polarization data of C_2H_5-X ($X=Cl, Br, I$) do not seem to be explained according to the possible symmetries; C_s , C_2 or C_1 for a rigid structure of CH_3-CH_2-X . That is, considered as a rigid structure, the selection rules for every symmetries predict 18 fundamentals to be both in Raman and infrared active, as shown by the following irreducible representations;

On the other hand, the selection rules derived from a non-rigid structure in which the CH_2 group rotates freely with respect to the CH_3 group yield 8 fundamentals [$4A_1(R,p;IR) + 4E(R;IR)$] due to $CH_3-(Y)-X(Y=CH_2)$ which has C_{3v} symmetry and 3 additional fundamentals due to the CH_2 group. The obtained vibrational spectra of CH_3-CH_2-X can be explained according to a non-rigid structure (C_{3v}) and the obtained NMR spectra strongly support a non-rigid structure for these molecules, too.

EXPERIMENTAL

All samples were purchased from commercial sources, and purified by distillation.

The Raman spectra of the liquids^{*1} were recorded on JEOL JRS-S1B spectrophotometer using Ar^+ (4880 Å) laser. The infrared spectra were measured both in gaseous and liquid state^{*2} with Shimadzu IR-450 spectrometer whose gas cell had a path of 10 cm and KRS-5 windows. The differences between the infrared spectra of gaseous and liquid samples are hardly discernible, but those for gaseous state are shown, so as to indicate the band types; a parallel type or a perpendicular one. The NMR spectra of the samples were measured with JEOL PS-100 spectrometer operating at 100 MHz and TMS was used as internal standard.

RESULTS AND DISCUSSION

The obtained Raman and infrared spectra of C_2H_5-X and CH_3-I which has a C_{3v}^{1-3} symmetry are shown in Fig. 1. The previous literature⁴⁻⁶ have reported that the structures of C_2H_5-X were C_s with a bent $C-C_X$ chain. In the case of

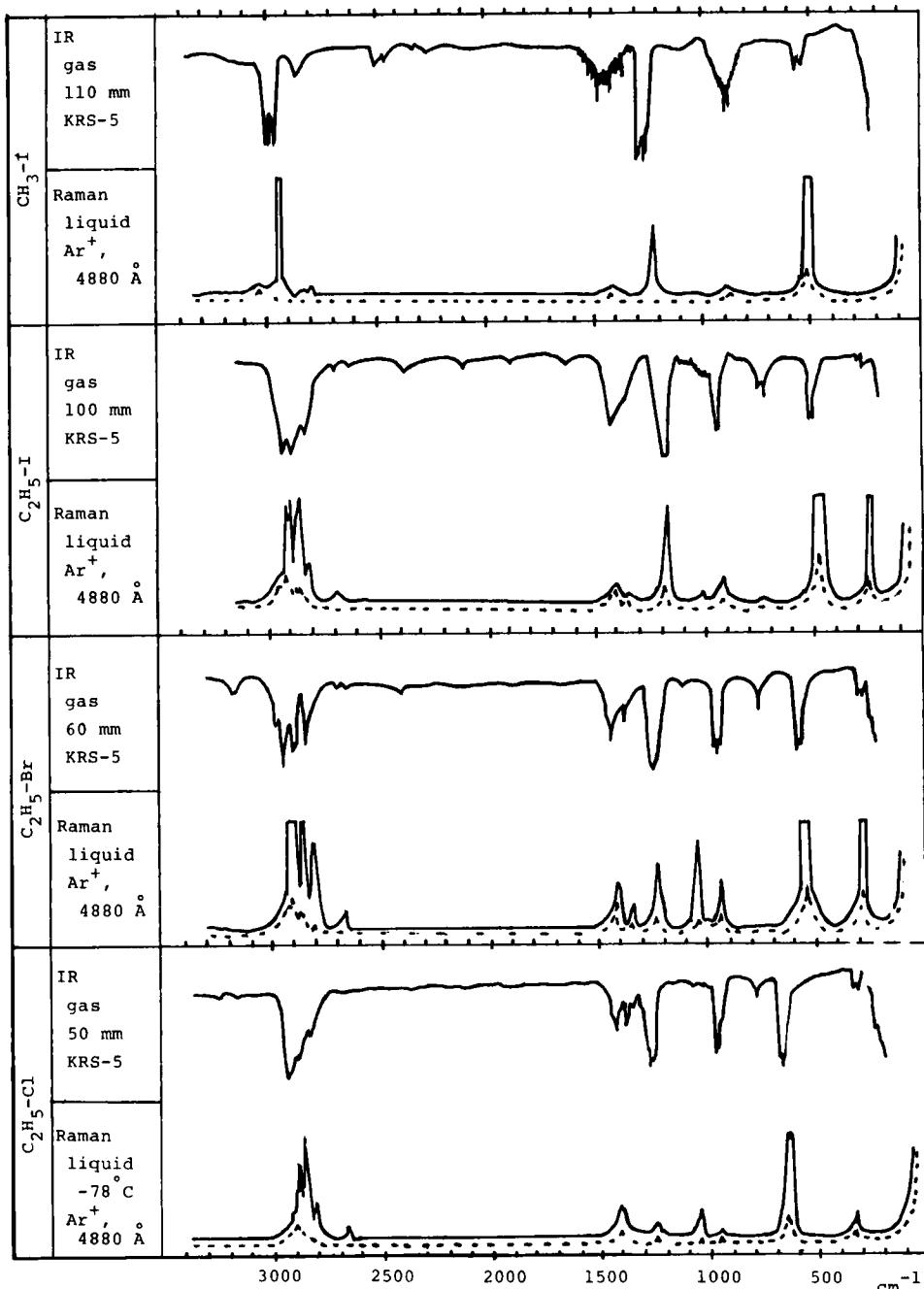


Fig. 1 Raman and infrared spectra of $\text{CH}_3\text{-I}$, $\text{C}_2\text{H}_5\text{-I}$, $\text{C}_2\text{H}_5\text{-Br}$ and $\text{C}_2\text{H}_5\text{-Cl}$
 (*) means that polarization state or band contour is ambiguous.

a bent chain, there would appear 18 fundamentals, all of which are both Raman and infrared active for C_2H_5-X . However the obtained spectra indicate the general simplicity of the spectra and resemble very closely to the spectra of CH_3-I with C_{3v} symmetry, except the appearance of $\nu_a C-C-X$, $\delta C-C-X$, νCH_2 , δCH_2 and ρCH_2 . There are some possible reasons for the simplicity as not expected; accidental overlapping and disappearing of weak bands. In this case, the C_s symmetry for a molecule might be erroneously taken as a C_{3v} . However it is supported by several spectroscopic arguments, as follows, that the CH_3-CH_2-X type molecules would have a non-rigid structure, in which a CH_2 group rotates freely with respect to the three hydrogen atoms of a CH_3 group. (1) The obtained spectra of CH_3-CH_2-X resemble closely to that of CH_3-I having C_{3v} symmetry. (2) It has been reported that a non-rigid molecule accompanied with an internal rotation can have the higher symmetry than the symmetry possible for a molecule considered a rigid structure^{7,8}. (3) A parallel type infrared band(A_1 species) shows a PQR structure with a proper P-R separation: 14 cm^{-1} for C_2H_5-I , 15 cm^{-1} for C_2H_5-Br and 19 cm^{-1} for C_2H_5-Cl . The presence of P, Q, and R branches demands that the major axis symmetry should be threefold or greater^{1,9-10}. (4) In a NMR spectrum of CH_3-CH_2-X there are two sets of equivalent nuclei, those of methyl group and those of methylene group. The signal of CH_2 , which appears at a lower field, is split into a quartet by the three equivalent protons in CH_3 , whereas the signal of CH_3 is a triplet resulting from a spin-spin interaction with the two equivalent protons in CH_2 . The spacing of the individual components in the two signals is identical. This can be explained on the basis of internal rotation occurring at a sufficiently rapid rate for the effective chemical shifts and spin coupling constants to be averaged¹¹.

Some possible reasons for the simplicity are above mentioned. In opposition, there are some possible reasons for the complexity of the spectra; mistaking a Fermi doublet, a vibration-rotational band contour and/or hot bands for plural fundamentals.^{*3} In this case, a C_{3v} symmetry for CH_3-CH_2-X would be regarded as a C_s one. Such a mistaking is pointed out by some workers¹²⁻¹⁵. Also Winther and Hummel⁶ have described that in view of the large number of "hot" transitions found in the spectra of the C_2H_5-Cl and C_2H_5-Br their absence in the spectrum of C_2H_5-I is somewhat puzzling. This seems to be the example where a family of Q branches of perpendicular type band would wrongly be assigned as hot bands. A perpendicular type band consisting of a family of Q branches is not so highly resolved in the spectrum when the moments of inertia of molecule are large¹³, and so the numbers of Q branches decrease with increasing molecular weight from C_2H_5-Cl to C_2H_5-I .

The above considerations have let me decide CH_3-CH_2-X type molecules to have a C_{3v} symmetry. The CH_3 stretching, deformation and rocking which are group vibrations can easily be assigned, by comparison with those of CH_3-I which has a C_{3v} symmetry. On the other hand, the assignments of the C-C-X stretching and bending of CH_3-CH_2-X are quite clear, because of their absence for CH_3-I . The CH_2 vibrations which never appear for CH_3-I are guessed to be close to the CH_3 vibrations in frequencies. A tentative assignments of the vibrational spectra for CH_3-CH_2-X are proposed in Table 1, according to a non-rigid(C_{3v}) selection rules. The non-rigid C_{3v} model of CH_3-CH_2-X is theoretically supported as follows; It is possible to consider a 2s and a 2p_z orbital in carbon atom as being hybridized to be linear -X- by exciting one of a 2s electrons into 2p state¹⁶. A p_x and a p_y orbital of carbon atom combine with 1s orbitals of two hydrogen atom to comform CH_2 group.

Table 1. Symmetry species, selection rules, band type, P-R separation and frequency assignments of CH_3^- -I and CH_3^- -Y ($X=I, \text{Br}, \text{Cl}; Y=\text{CH}_2$)

C_{3v}	Form. of Vibration	CH_3^- -I		$\Delta\nu_{\text{PR}}$		CH_3^- (Y)-I		$\Delta\nu_{\text{PR}}$		CH_3^- (Y)-Br		$\Delta\nu_{\text{PR}}$		CH_3^- (Y)-Cl		$\Delta\nu_{\text{PR}}$	
		Raman		IR		Raman		IR		Raman		IR		Raman		IR	
			cm^{-1}		cm^{-1}		cm^{-1}		cm^{-1}		cm^{-1}		cm^{-1}		cm^{-1}		
A_1	$\nu_s \text{CH}_3$	(p) 2947vs	(II) 2978vs	21	(p) 2967s	(II) 2995s	14	(p) 2973s	(*) 3002vs	(*)	(p) 2970s	(*) 3005s	(*)				
	$\delta_s \text{CH}_3$	(p) 1237s	(II) 1253vs	21	(p) 1202s	(*) 1215vs	(*)	(p) 1254s	(*) 1254vs	(*)	(p) 1282w	(II) 1290w	(*)				
	$\nu_{as}^- \text{C-}(Y)-X$	nil	—	—	(p) 1055m	(*) 1024vw	(*)	(p) 1064s	(*) 1060vw	(*)	(p) 1074w	(*) 1074w	(*)				
	$\nu_s^- \text{C-}(Y)-X$	(p) 522vs	(II) 535m	21	(p) 500vs	(III) 511s	14	(p) 562vs	(II) 576vs	15	(p) 638vs	(III) 678s	19				
E	$\nu_{as} \text{CH}_3$	(d) 3040w	(II) 3075w	—	(d) 3018wsh	—	(d) 3025w	(II) 3036wsh	—	(d) 3035wsh	—	(d) 3091wsh	(II) 3023s	—			
	$\delta_{as}^- \text{CH}_3$	(d) 1425w	(II) 1477m	—	(d) 1440m	(II) 1450s	—	(d) 1445m	(II) 1453s	—	(d) 1452m	(II) 1450s	—				
	$\rho_r \text{CH}_3$	(d) 882w	(II) 886s	—	(d) 750w	(II) 743m	—	(d) 775vw	(II) 771m	—	(*)	(II) 787m	—				
	$\delta^- \text{C-}(Y)-X$	nil	—	(d) 980vw	(*) 990vw	—	(d) 1023w	(*) 1015wsh	—	(d) 1248wsh	(*)	(*)	—				
$2 \times \delta_{as}^- \text{CH}_3$	Torsion	nil	nil	—	(p) 263vs	(*) 255w	(*)	(p) 292vs	(*) 284w	(*)	(p) 337m	(*) 334m	(*)				
	(p) 2820s	(II) 2845m	(*)	(p) 2862m	(II) 2887s	14	(p) 2863m	(II) 2888s	15	(p) 2887m	(*) 2916	(*)					
A_2	$\nu_s \text{CH}_2$	nil	nil	—	(p) 2920s	(II) 2937s	14	(p) 2927vs	(II) 2944s	16	(p) 2937vs	(II) 2953	20				
	δCH_2	nil	nil	—	(p) 1380w	(*) 1377w	(*)	(p) 1379w	(*) 1386wsh	(*)	(p) 1392w	(*) 1397w	(*)				
	$\rho_r \text{CH}_2^{(**)}$	nil	nil	—	(p) 950m	(II) 956s	14	(p) 961m	(II) 965s	15	(*) 967w	(II) 974s	19				

(*) shows that polarization data, P-R separations, or bands are ambiguous or unobservable.

(**) shows that $\rho_r \text{CH}_2$ band should be depolarized and perpendicular type one, but the one is against the selection rules. A clear account is not given of this violation of selection rules. The similar violation has been previously reported¹⁷.

Grateful appreciation is expressed for financial support of this work by the Science Research Fund of the Ministry of Education of Japan.

FOOTNOTE

*1 Generally speaking, the Raman measurement of gaseous state is very difficult.

*2 The infrared measurement in liquid state of C_2H_5Cl could not be done, because a boiling point of C_2H_5Cl is lower than a room temperature, and the present authors do not have a low temperature cell for infrared.

*3 In the literature¹⁵, the two absorption maxima at 1430 and 1475 cm^{-1} in the infrared spectrum of the vapor of CH_3-S-CH_3 are interpreted as branches of a single band and not as two separate bands. This is correct and shows that some of the previous workers mistook vibration-rotational band contours of a single band for plural fundamentals. Such a mistaking would lead a C_{3v} to a C_{2v} for CH_3-X-CH_3 type molecule or a C_{3v} to a C_s for CH_3-CH_2-X .

REFERENCES

- 1 G. Herzberg, "Molecular Spectra and Molecular Structure II" Van Nostrand Reinhold Co., New York(1945) p.314 and p.414
- 2 W. H. Bennet and C. F. Meyer, Phys. Rev., 32, 888(1928)
- 3 J. G. Moorehead, Phys. Rev., 39, 788(1932)
- 4 A. B. Dempster and G. Zerbi, J. Mol. Spectroscopy, 39, 1(1971)
- 5 S. Suzuki, J. L. Bribes and R. Gaufrès, J. Mol. Spectroscopy, 47, 118(1973)
- 6 F. Winther and D. O. Hummel, Spectrochim. Acta, 25A, 425 (1969)
- 7 D. M. Byler and D. F. Shriver, Inorg. Chem., 13, 2697(1974)
- 8 I. R. Beattie and G. A. Ozin, J. Chem. Soc., A, 370(1970)

- 9 M. Davies, "Infrared Spectroscopy and Molecular Structure" Elsvier Co., New York(1963) p.153
- 10 R. A. Kovar and G. L. Morgan, Inorg. Chem., 8, 1099(1969)
- 11 J. A. Pople, W. G. Schneider and H. J. Bernstein, "High-Resolution Nuclear Magnetic Resonance", McGraw-Hill Book Co., New York(1959) p.94 and p. 377
- 12 K. Hamada and H. Morishita, J. Mol. Struct., 44, 119(1978)
- 13 K. Hamada and H. Morishita, J. Mol. Struct., 48, 191(1978)
- 14 K. Hamada and H. Morishita, Syn. React. Inorg. Metal-Org. Chem., 7, 355(1977)
- 15 D. W. Scott and M. Z. El-Sabban, J. Mol. Spectroscopy, 30, 317(1969)
- 16 W. J. Moore, "Physical Chemistry" Prentice-Hall Inc., N. J. (1962) p.537
- 17 S. G. Frankis, J. Mol. Struct., 3, 89(1969)

Received: March 17, 1980

Accepted: April 15, 1980